Ambient Occlusion revisited, reflections, global illumination and new project

Hello there.

Today, we are going to talk about 4 subjects.
The first one is a new computation of Ambient Occlusion, the second one is reflection, as I said the last time.

The final part of this article will be on GI and about a graphic engine.

Even if we are going to talk of several subjects, it will be fast because I don’t have too much things to say on every field.

So, for the ambient occlusion

We remind to:

\displaystyle{AO=\frac{1}{\pi}\int_{\Omega}V(\overrightarrow{x},\overrightarrow{\omega})\cdot\cos(\theta)\cdot d\omega}
\displaystyle{AO=\frac{1}{\pi}\int_{[0,2\pi]}\int_{[0,\frac{\pi}{2}]}V(\overrightarrow{x},\overrightarrow{\omega})\cdot\cos(\theta)\sin(\theta)\cdot d\theta d\phi}
\displaystyle{AO=1-\frac{1}{2\pi}\int_{[0,2\pi]}\int_{[0,\frac{\pi}{2}]}\overline{V}(\overrightarrow{x},\overrightarrow{\omega})\cdot\sin(2\theta)\cdot d\theta d\phi}
\displaystyle{AO\approx 1-\frac{\pi}{2n}\sum_{i=0}^{n}\overline{V}(\overrightarrow{x},\overrightarrow{\omega_{i}})\cdot\sin(2\theta_{i})}

where \theta_{i} and \omega_{i} are a « random » variable.

If you want the « real AO » (real is not just, because Ambient Occlusion is not one physic based measure), you have to raytrace this function, and take care about all of these members.

So, we want to approximate again this formula, and, now, we have 2 textures, and the second one is the normal map, another own the position map.

If you want to know the AO in one point, you have to take few samplers around this pixel (the sampling area is a disk in my code).
So, if your ray is in the hemisphere, the angle between ray and normal is \theta\in[-\frac{\pi}{2},+\frac{\pi}{2}] . You can improve this formula
with a factor distance
We don’t need really the view function, indeed, if you take a sampler no « empty », you have one intersection, and if the cell is empty, \overrightarrow{n}\cdot\overrightarrow{\omega_{i}}=0, so doesn’t matter.

#version 440 core

/* Uniform */
#define CONTEXT 0

layout(shared, binding = CONTEXT) uniform Context
    vec4 invSizeScreen;
    vec4 cameraPosition;

layout(binding = 0) uniform sampler2D positionSampler;
layout(binding = 1) uniform sampler2D normalSampler;

// Poisson disk
vec2 samples[16] = {
vec2(-0.114895, -0.222034),
vec2(-0.0587226, -0.243005),
vec2(0.249325, 0.0183541),
vec2(0.13406, 0.211016),
vec2(-0.382147, -0.322433),
vec2(0.193765, -0.460928),
vec2(0.459788, -0.196457),
vec2(-0.0730352, 0.494637),
vec2(-0.323177, -0.676799),
vec2(0.198718, -0.723195),
vec2(0.722377, -0.201672),
vec2(0.396227, 0.636792),
vec2(-0.372639, -0.927976),
vec2(0.474483, -0.880265),
vec2(0.911652, 0.410962),
vec2(-0.0112949, 0.999936),

in vec2 texCoord;
out float ao;

void main(void)
    vec3 positionAO = texture(positionSampler, texCoord).xyz;
    vec3 N = texture(normalSampler, texCoord).xyz;

    vec2 radius = vec2(4.0 * invSizeScreen.xy); // 4 pixels
    float total = 0;

    for(uint i = 0; i < 16; i ++)
        vec2 texSampler = texCoord + samples[i] * radius;
        vec3 dirRay = texture(positionSampler, texSampler).xyz - positionAO;
        float cosTheta = dot(normalize(dirRay), N);

        if(cosTheta > 0.01 && dot(dirRay, dirRay) < 100.0)
            ao += sin(2.0 * acos(cosTheta));
            total += 1.0;

    // Don't multiply by Pi to get a better result
    // addition is here if total == 0
    ao = 1.0 - ao / (2.0 * total + 0.01);

For that, you perform the calculation over the screen divided by 4 (2 for width, and 2 for height), and you can apply a gaussian blur with separate pass thanks to compute shaders.
For one rendering in 1920 * 1080p, (Thus, the occlusion map size is : 1024 * 1024), the ambient occlusion pass take less than 2ms to be computed.

I have nothing to say about reflections, I don’t use the optimisations of László Szirmay-Kalos, Barnabás Aszódi, István Lazányi and Mátyás Premecz with their Approximate Ray-Tracing on the GPU with Distance Impostors.

So, it is only a environment map, like omnidirectional shadow (the prior article).


Global Illumination (GI), a very interesting subject where researchers spend a lot of time…

The GI, is bounces of light on different surfaces.


You can see blue, green, and red on the floor.

I don’t implement a very efficient model, so I gonna to present you only the way and the idea that I found.

So, for our mathematical model, we use \overline{\cos} for cos clamped between 0 and 1.

We need to use BRDF (Bidirectional reflectance distribution function). The BRDF is a function (really :p? ) which is given 2 directions(\omega_{i} and \omega_{o}) and return a rapport of « power of outgoing vector on power of incident vector ». This function verify these properties :

\displaystyle{\int_{\Omega}BRDF(\omega_{i},\omega_{o})\cdot\cos(\theta_{r})\cdot d\omega_{r}\leq 1}

For a lambertian surface, the light is reflected with the same intensity all over the hemisphere, so, we can lay BRDF=K and, with these previous property

\displaystyle{\int_{\Omega}BRDF(\omega_{i},\omega_{o})\cdot\cos(\theta_{r})\cdot d\omega_{r}\leq 1}
\displaystyle{\int_{\Omega}K\cdot\cos(\theta_{r})d\omega_{r}\leq 1}
\displaystyle{K\pi\leq 1}


\displaystyle{BRDF_{lambertian}=\frac{\rho}{\pi}} where \rho\in[0, 1].

\rho is called « Albedo ». For the clean snow, \rho is close to 1, for a very dark surface \rho is close to 0.

The basic idea behind my algorithm is based on Instant Radiosity from Keller.

We render the scene from the light source, on a very little FrameBuffer (8*8, 16 * 16, 32 * 32, or 64 * 64 (but it’s already too much) ), and thanks to shader buffer storage, for each pixel, we can store on this buffer our lights.

\displaystyle{L_{o}=\frac{\rho\cdot K_{d}}{N\cdot\pi}\cdot L_{i}\cdot\overline{\cos(\theta_{i})}PHONG}
where PHONG (Phong lighting on google) is calculation of the power of light in x and Kd is the colour of the object touch by light.

After that, you just have to render lights like other.

So, for the new project, I will begin to write one open source graphic engine. I will try to do it totally bindless. (Zero bind texture : extension bindless texture, Few bind buffer : Only few big buffers). I will implement a basic tree of partitionning space totally in GPU thanks to compute shaders. I will implement phong shading or phong brdf (if I success ^^).

See you !


Laisser un commentaire

Entrez vos coordonnées ci-dessous ou cliquez sur une icône pour vous connecter:


Vous commentez à l'aide de votre compte Déconnexion / Changer )

Image Twitter

Vous commentez à l'aide de votre compte Twitter. Déconnexion / Changer )

Photo Facebook

Vous commentez à l'aide de votre compte Facebook. Déconnexion / Changer )

Photo Google+

Vous commentez à l'aide de votre compte Google+. Déconnexion / Changer )

Connexion à %s